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We investigated the capacity of internal border control to limit influenza spread in an emergent 

pandemic in the context of Australia, a country with a low-population density and geopolitical 

boundaries that may facilitate restrictions. Mathematical models were used to study the time 

delay between epidemics in 2 population centers when travel restrictions were imposed. The 

models demonstrated that population size, travel rates, and places where travelers reside can 

strongly influence delay. The model simulations suggested that moderate delays in geographic 

spread may be possible with stringent restrictions and a low reproduction number, but results will 

be sensitive to the reproduction number and timing of restrictions. Model limitations include the 

absence of further importations and additional control measures. Internal border control may 

have a role in protecting domestic centers early in a pandemic, when importations are sparse. 

Our results may be useful for policymakers. 

Commercial air travel has increased dramatically since the last pandemic of influenza 

(1). The number of international tourist arrivals recorded worldwide in 2004 was 763.2 

million; 43% of these arrivals were by air (2). This increase in international travel has 

heightened the risk for the global spread of infectious diseases (1). 

Long-distance domestic routes also carry high volumes of travelers: an estimated 40.4 

million passengers traveled on Australian domestic airlines in the year ending June 30, 2005 

(3), and 660 million traveled on US domestic airlines during 2005 (4). Rapid and accessible 

long-distance transportation facilitates the geographic spread of diseases, even those, such as 

influenza, that have a short incubation period (5). 
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If an influenza pandemic emerges, the first attempts to control its spread are likely to 

be made at its source, as suggested in recent modeling papers (6,7). However, if these 

strategies fail, individual governments will need to implement strategies to manage the 

pandemic when it arrives on their borders. In addition to well-publicized options for control, 

including antiviral prophylaxis and quarantine (6,7), travel restrictions, both external and 

internal, may play a role in reducing the geographic spread of the virus (8–11) 

Restrictions on travel can have a sizeable economic and social impact, as seen in 

affected nations during the crisis with severe acute respiratory syndrome (SARS). In many 

countries, stringent travel restrictions will not be feasible because of high population densities 

and highly connected networks of transportation, infrastructure, and trade. These caveats do 

not apply to Australia, an island comparable in size to the United States but with a population 

of only 20 million. This population is concentrated in 5 large cities, along with smaller 

centers, primarily along its eastern and southern coastlines. These centers are widely 

separated; travel between them is primarily by air. During the 1918 pandemic, Australia 

delayed the onset of the pandemic by 1 year by imposing external border control (12). 

We used mathematical models to make predictions about the effectiveness of travel 

restrictions and to explore the sensitivity of these predictions to disease and demographic 

factors. Typically, modeling studies of influenza spread are focused on predicting 

international or national spread between major hubs on the global air-transportation network 

(8,9,13), which is certainly important. In contrast, we examine the effects of travel 

restrictions on 2-city routes with differing characteristics. This simpler setting allows a more 

detailed exploration of how the delay between epidemics in 2 connected locations depends on 

travel restrictions, population sizes, travel rates, residence of travelers, and the 

transmissibility of the influenza virus, with relevance to large and small centers. The analysis 

assumes case-patients arriving from overseas have a negligible effect, so the results apply 

primarily during the early stage of a pandemic. Simulating the effect of internal travel 

restrictions in Australia is relevant to countries with similar demographic characteristics, such 

as Russia, Canada, and New Zealand. The aims of our analysis were to explore the role of 

travel restrictions in slowing the geographic spread of an influenza pandemic and to simulate 

the effects of such restrictions in the context of Australia. 
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Methods 

Two simple scenarios (Figure 1A) were used to assess the likely impact of travel 

restrictions on the spread of a pandemic in Australia. In the first, it was assumed that the 

initial cases occurred in Sydney. The growth of this epidemic and its resultant spread to 

Melbourne in the presence of travel restrictions were simulated. This scenario is indicative of 

the spread to other large centers with similar travel volumes. In the second scenario, the 

initial case was assumed to occur in Darwin, a smaller Australian city in close proximity to 

Southeast Asia, and the growth of this epidemic and spread to Sydney were simulated. The 

Darwin-to-Sydney scenario, with a comparatively low travel volume, represents the situation 

of containing the epidemic within a smaller town through the use of travel restrictions. Key 

parameters and assumptions are summarized in Table 1. 

Data 

Average daily volumes of domestic air travel between Sydney, Melbourne, and 

Darwin were obtained from the Australian Domestic Airline Activity report (17). Only direct 

flights were considered. Seasonal variations in the volume of air traffic were not taken into 

account. Approximately 78% of the traffic from Sydney to Melbourne and 70% of the traffic 

from the Northern Territory to the eastern Australian states is by air (18). 

As a separate indicator of travel volumes that incorporates the average length of stay 

and information on the origin of travelers, we used survey estimates of nights stayed by 

domestic visitors to the 3 study destinations (Melbourne, Sydney, and Darwin). The data 

were obtained from the state government tourism websites for Victoria (20), New South 

Wales (NSW) (19), and the Northern Territory (21). Because details on visitor origin were 

only obtained at the state level, we assumed that each person in that state would make an 

equal contribution to visitor nights in the destination city. These values were then used to 

estimate the proportions of the travel volume due to each of the 2 cities on a route and to 

modify force of infection calculations by incorporating the average length of stay. The travel 

rates (weighted by length of stay) used in the simulations are provided in Table 1. 

Demographic data on cities and states were acquired from the Australian Bureau of Statistics 

population estimates for 2004 (16). 

Model Structure 

Simulations of influenza epidemics were computed by using a stochastic SIR model, 

in which the population is separated into 3 mutually exclusive classes: susceptible (S), 
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infectious (I), and recovered (R). A stochastic model can capture random variation near the 

beginning of an epidemic, when the number of infectious persons is small. Homogeneous 

mixing is assumed, i.e., all susceptible members of the population in a city are equally likely 

to be infected by a given infectious person. 

A schematic of the model is given in Figure 1B, and the defining equations are 

presented in the Appendix, part A. The model evolves in discrete time, with the step length 

equal to 1 day. This time frame accords with real-life epidemics, for which incidence and 

other epidemiologic data are usually recorded daily. The discrete time structure simplifies the 

introduction of a variable infectivity profile, incorporating a latent, noninfectious period and a 

changing degree of infectivity for each person during the course of his or her illness. This 

feature of the model is supported by virus-shedding studies (22) and enables us to contrast the 

effect of a highly peaked infectivity profile, similar to that used by Ferguson et al. (6), with 

the effect of a constant infectivity profile (7), as depicted in Figure 1C. 

A key factor governing the effectiveness of our travel restrictions is the average 

doubling time of the attack rate during the early stages of the epidemic, when growth is 

exponential. The doubling time is determined by the basic reproduction number (R0), defined 

as the average number of secondary infections due to a single primary infected person in a 

completely susceptible population, and the form of the infectivity profile. The infectivity 

profile primarily influences the growth rate through the mean time (or serial interval) 

between cases: ≈2.8 days for the peaked infectivity function and 4 days for the flat infectivity 

function used here. The doubling time depends linearly on the serial interval so that 

epidemics that use the peaked infectivity profile double in size almost 1.5× as quickly as 

epidemics that use the flat infectivity profile, for the same value of R0. The infectivity profile 

and R0 depend on properties of the pathogen and on social, environmental, and genetic 

factors. 

Although influenza appears to be a highly infectious disease, with regular winter 

epidemics, this is largely due to its short incubation period and genetic drift, which nullifies 

preexisting immunity. Thus, literature estimates of the effective reproduction number for 

influenza are typically <4 (14) (whereas for measles R0 is 20 [15]), although in localized 

outbreaks it can be considerably higher (23). We take R0 to be in the range 1.5–3.5, which 

corresponds to attack rates of 58%–97% (including subclinical infections) in a population 

without prior immunity or behavioral changes in response to the pandemic. 
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The total period of infection, including latent period, was assumed to be 6 days (7). 

For each infectivity profile, the latent period was ≈1 day, which is at the low end of literature 

estimates (other researchers have used values of 1–4 days [8,9,24]). Spread from city to city 

is incorporated by assuming that each person is equally likely to travel; the daily travel rates 

were estimated from the data sources described above. This assumption was pessimistic, 

since symptomatic infected persons may not travel, but it did not greatly influence the results 

(Appendix, part A). 

Travel restrictions were implemented as a reduction of the rate of all forms of travel. 

For this analysis, reductions of 80%, 90%, and 99% were compared with the base case of 

unrestricted travel. The values of 80% and 90% might be realistic reduction targets, whereas 

the value of 99% indicates what near-perfect compliance might achieve. Travel restrictions 

were switched on in the model at some time (measured in weeks) after the initial case 

occurred and remained on for the rest of the simulations. 

The principal measure used in this analysis for gauging the effect of travel restrictions 

is T20, the delay between the epidemic’s becoming established in city 1 and taking off in city 

2. We considered the outbreak to have taken off in a city once there were 20 current 

infectious cases—hence, the notation T20 for the delay between the epidemics. This choice 

conveniently limited comparisons to simulated epidemics that do take off. Because the model 

is stochastic, T20 is random, and the results shown in the graphs are for m20, the median value 

for outbreaks that take off. Ranges, when given, cover 90% of outbreak simulations. 

The simulations were run with MATLAB version 7.04 (The MathWorks, Natick, MA, 

USA) with Poisson random variables simulated by the poissrnd function in version 5.02 of 

the Statistics Toolbox (MathWorks). Our results are based on 10,000 runs of the model. 

Motivated by the results of the simulation study, we then analyzed the effects of city 

size and travel rates by using a deterministic approximation of the above model (details given 

in the Appendix, part B). This approximation has the advantage of being much simpler to use 

in analyzing sensitivity to these factors, while reproducing the average behavior of the 

stochastic model. 
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Results 

Scenario 1 (Sydney to Melbourne) 

The median and mean numbers of days until there are 20 infectious persons in Sydney 

for an epidemic that began with 1 infectious person in Sydney on day 0 are presented in 

Table 2. Figure 2 illustrates how m20, the median time between the day when the number of 

infected persons first reached 20 in Sydney and the day when the number of infected persons 

first reached 20 in Melbourne, depends on R0, the form of the infectivity profile, and the 

timing and severity of travel restrictions. 

Each of the graphs covers 1 of the 6 combinations of the 3 values of R0 and 2 

infectivity profiles. The 4 curves shown on each graph describe the median values for each of 

the 4 levels of travel restrictions (none, 80%, 90%, and 99%), applied at delays from 

importation of the first case from 0 to 6 weeks (8 weeks for R0 = 1.5). The gray panes 

highlight the time during which the epidemic grows from 20 to 1,000 cases in Sydney. 

The travel restrictions are most effective for the optimistic assumption R0 = 1.5 and 

constant infectivity (Figure 2A). Figure 2B and C more closely resemble the epidemic growth 

rates used in recent modeling papers (6,7). In Figure 2B (R0 = 1.5, peaked infectivity), an 

increase in m20 from 22 to 32 days is seen for 80% restrictions, with a further increase to 52 

days for 99% restrictions, if applied immediately. These improvements appear robust for 

delays of up to 4 weeks, but in fact a sizeable proportion of the simulations have spread to 

Melbourne by this point. This effect is illustrated in Figure 3A and B, in which we compare 

the full distribution of T20 in the presence of 99% travel restrictions applied at the 2- and 4-

week marks, respectively. Both distributions are bimodal, but in Figure 3B, the first mode is 

substantial. This difference arises because a large proportion of simulated outbreaks spread to 

Melbourne between the 2- and 4-week marks for this combination of disease parameters, a 

finding that emphasizes that timing can be critical for the success of travel restrictions. Under 

the pessimistic assumption of R0 = 3.5 and peaked infectivity (Figure 3F), the impact of travel 

restrictions is muted, and a delay of just 2 weeks renders the restrictions ineffective. 

Scenario 2 (Darwin to Sydney) 

For an epidemic originating in Darwin, the median times until there are 20 infectious 

persons in Darwin are almost identical to those for scenario 1 (Table 2), although the 90% 

ranges are a little wider. In this scenario, m20 is the median time between the first day on 

which there are 20 infected persons in Darwin and the first day on which there are 20 
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currently infected persons in Sydney. The effects of R0, the infectivity function, and the delay 

in and severity of travel restrictions are captured in Figure 4.  

These results, presented in the same format as Figure 2, show 2 key differences from 

those in scenario 1. The median delay, m20, is shorter in scenario 2, given the same 

combination of disease parameters, as is the time interval over which restrictions can be 

applied effectively. This finding appears counterintuitive because the volume of travelers on 

the Darwin-to-Sydney route is much smaller than that on the Sydney-to-Melbourne route. 

By using the simpler model described in the Appendix part B, we performed a 

sensitivity analysis (Appendix Figure) on the effect of city size and travel rates on epidemic 

spread. This analysis implies that in scenario 2, in which there is a large difference in 

population size (Darwin:Sydney ≈1:40), infection of susceptible travelers from Sydney is the 

primary reason for the rapid intercity spread, despite the lower rate of travel for Sydney 

residents on this route. The Appendix Figure, panel B, shows that this effect would be 

reduced if the rate at which Sydney residents travel to Darwin were much lower than that for 

Darwin residents traveling to Sydney. Such a reduction could be achieved by applying tighter 

restrictions on Sydney-based travelers. 

The ratio of city populations also influences the time interval when restrictions can be 

applied effectively. Travel restrictions were less effective if applied after the time at which 

there were 20 current cases in Darwin (Figure 4). This feature was illustrated by Figure 3, 

panels C and D, which show the full distributions of T20 for 2- and 4-week delays in 

restrictions, respectively. For a 2-week delay (Figure 4C), most outbreaks were delayed but a 

sizeable minority were not. A 4-week delay (Figure 4D) nullified any impact of the 

restrictions for this scenario. If, however, travel restrictions were applied immediately after 

the first case was detected, the increase in T20 due to restrictions was almost identical to the 

increases described in scenario 1. 

Now consider a situation in which a small isolated center (town A, population 1,000) 

attempts to remain pandemic free. Let us assume that on any given day, N visitors stay in the 

town, and N town members visit pandemic-affected regions. A simple stochastic model of 

disease spread (Appendix, part D) can predict the probability that the outbreak can be kept 

out of town A in terms of N and R0 (Appendix, part D). Predictions from this model agree 

well with simulations, as shown in the Appendix Figure, panel C. These results indicate that 

travel restrictions are likely to prevent an outbreak if N is reduced to ≈1/10 per day. 



Page 8 of 21 
 

Sensitivity to Other Factors 

The sensitivity of the results to the duration of infection and form of the infectivity 

function were entirely a result of the change in the epidemic growth rate. If, for example, an 

additional day of latent infection were added, then the delays in spread, when the flat and 

peaked infectivity functions were used, were ≈25% and ≈37% longer, respectively, which is a 

considerable effect. However, epidemic growth rates in past pandemics are typically not 

consistent with longer latent periods and low values of R0, so these additional delays should 

be viewed with caution. 

The sensitivity to the estimated travel volumes was relatively weak: increasing or 

reducing travel by a factor of 2 in each direction increases or reduces the delay by 1.5–7 days, 

and 4.5 or 2.5 days as compared to data in Figures 2 and 4, respectively. These results are 

consistent for both scenarios. 

Discussion 

The simulations we describe showed that although travel restrictions might delay the 

spread of an influenza epidemic between 2 cities by several weeks, this delay is highly 

sensitive to assumptions about the transmissibility of the influenza virus. A more surprising 

result is that the delay is also sensitive to the ratio of city sizes, differences in travel rates, and 

the originating city. In particular, the modeling suggests that if the epidemic begins in a 

smaller town, restricting visitors from entering or leaving that town is important. 

Moderate delays in the pandemic could be achievable when the epidemic growth rate 

is low. The growth rate can be estimated from case counts during an epidemic and used in a 

simple formula to predict the delay due to travel restrictions (Appendix, part D). These 

predictions could provide practical estimates of the benefits of longer term travel restrictions 

based on the first clusters of cases during an outbreak. For smaller communities with low 

travel rates, the probability of preventing an outbreak can also be estimated (Appendix, part 

D), with good agreement with the results of our simulations (Appendix Figure, panel C). If 

the estimated growth rate is high (e.g., assumptions used in Figures 2 and 4 with R0 = 3.5, 

peaked infectivity), the additional median delay between 20 cases occurring in city 1 and 20 

cases occurring in city 2 might be just 3 days, providing little benefit from longer term 

implementation of travel restrictions 



Page 9 of 21 
 

Our results do not account for additional importations. Thus, they are most applicable 

to the arrival of a pandemic in Australia, while the pandemic outside Australia remains 

contained or border control is effective. Our simulated delays will be overestimates if 

additional importations are substantial. Another concern is that stringent travel restrictions 

may be required for several weeks to maximize delays in spread. Inevitably, such restrictions 

would cause economic and social disruption, which must be balanced against any benefits 

from delaying the domestic spread of an epidemic. 

If combined with restrictions on overseas travel, restrictions on internal travel may 

have a role in pandemic control, even for major centers. However, the economic impact of 

restrictions in major centers could be enormous, with severe consequences for service and 

travel industries, as seen in the SARS crisis (25), and the potential to affect trade and other 

sections of the economy. Some of the benefits and costs of reduced travel may also accrue 

without restrictions, with persons avoiding travel because of perceived risks. Our modeling 

suggests that travel restrictions could have a greater effect in more isolated communities that 

lack international ports. 

The travel restrictions we discussed have been examined in isolation, without 

consideration of other disease control measures. Other measures could lower the effective 

value of the reproduction number, or even curtail the epidemic; in these circumstances, 

reducing all travel by only 80% might be beneficial. Alternatively, if the R0, is much higher 

than used here (23), internal travel restrictions would be ineffective. Limitations of our 

modeling approach are summarized in Table 3. 

The key points in our study are that delays induced by internal border control are 

strongly influenced by epidemic growth rates and demographic factors such as the relative 

sizes of cities, travel rates, and the origin of travelers. When used without other control 

measures, stopping at least 99% of travel would be required to significantly increase time 

available for vaccine production and distribution. Although any delay in spread might be 

attractive for logistical purposes, the economic impact of such restrictions may be prohibitive 

if sustained for more than a few days. In view of these points, the situation in which they 

might be most applicable for extended use is in the protection of small, relatively isolated 

centers. 
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Table 1. Summary of parameter values, assumptions, and sources used in models of the effect of travel restrictions on pandemic 
influenza in Australia* 
Variable/concept Value (range)/assumption Source/interpretation 
Reproduction no. (R0) 1.5–3.5 Mills (14) 
Infectivity function (ρ) Flat or peaked† Longini, Ferguson (7,8) 
Latent period 1 (1–2 in sensitivity analysis) d(s) Ferguson (6) 
Infectious period 5 d Literature suggests 4–7 d in adults (6,7) 
Mixing Homogenous (within city) Modeling literature (15) 
Propensity to travel Everyone equal Assumption 
Populations Sydney (4.2 million), Melbourne  

(3.6 million), Darwin (110,000) 
ABS Figures (16) 

Travel rate‡ Sydney ↔ Melbourne 
(weighted by stay length) 

(4.7 × 103, 8.9 × 103) BTRE Figures (17,18), NSW, and  
Victoria Tourism reports (19,20) 

Travel rate‡ Sydney ↔ Darwin  
(weighted by stay length) 

(9.2 × 104, 4.4 × 103) BTRE Figures (17,18), NSW, and  
NT Tourism reports (19,21) 

Travel restrictions 20%,10%, or 1% of current levels Assumption 
Time between 20 current cases  
in city 1 and city 2 (T20) 

Random variable (T20), different for  
each simulation. Median value over  

all simulations is given by m20. 

Output variables used to measure  
effect of travel restrictions 

*ABS, Australian Bureau of Statistics; BTRE, Bureau of Transport and Regional Economics; NSW, New South Wales; NT, Northern Territory. 
†See Figure 1, panel C, for shapes used. 
‡This assumes a constant travel rate over the year with no seasonal variation in travel volumes. 
 
 
 
 
Table 2. No. days for an influenza epidemic beginning in Sydney to total 20 currently infectious cases* 
 Constant infectivity profile† Peaked infectivity profile† 

R0 Median (d) 90% range (d) Mean (d) Median (d) 90% range (d) Mean (d) 
1.5 24 (13–46) 25.9 15 (8–31) 16.4 
2.5 12 (8–21) 13.0 8 (5–14) 8.4 
3.5 9 (6–14) 9.5 6 (4–10) 6.2 
*R0, reproduction number. 
†The constant infectivity profile assumes that a person is equally infectious throughout their infectious period; the peaked infectivity profile assumes that 
they are most infectious early in the infectious period (see Figure 1C for the profiles used). 

http://www.nttc.com.au/nt/system/galleries/download/NTTC_Research/June_quarterly_report_0405.pdf
http://www.nttc.com.au/nt/system/galleries/download/NTTC_Research/June_quarterly_report_0405.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9449698&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15071187&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16229762&dopt=Abstract
mailto:jamesw5@chw.edu.au
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Table 3. Limitations and effects of modeling effects of border control on pandemic influenza, Australia 
Limitations Effects 
Reproduction number (R0) and infectivity function for 
pandemic influenza are unknown. 

Larger R0 and a shorter average time between infections would reduce 
effectiveness of restrictions. 

Further importations not considered. Frequent importations would greatly reduce benefits of internal 
restrictions for cities with international airports or ports. 

Other control measures (pharmaceutical and social 
distancing) are not considered. 

Reductions in transmission would increase effectiveness of 
restrictions. 

Heterogeneous mixing and travel patterns are not 
considered. 

Heterogeneity could increase or reduce delays in epidemic spread. For 
example, high transmission among infrequent travelers (e.g., the 
elderly, children) would make restrictions more effective. 

Travel rates and restrictions are based on air-travel 
volumes alone. 

Restrictions would prevent no more than 80% of travel if non–air travel 
remains unrestricted, which would considerably reduce effect of 
restrictions. 

Seasonal variation in travel and transmissibility are not 
considered. 

Could lead to less or more effective restrictions if arrival of pandemic is 
in winter/summer. 

 

 

 

 

 

Figure 1. Schematic of travel locations and model. A) Model schematic showing the SIR (susceptible, 

infectious, and recovered) classes and travel connecting the cities; B) locations of the cities and 

routes used in the model; C) the form of the 2 infectivity functions used to simulate the infectivity of 

persons over the course of their infection.  
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Figure 2. For an epidemic beginning in Sydney, the value of the median time delay, m20, in the 

presence of travel restrictions applied at a delay of 0–6 weeks (10 and 8 weeks in [A] and [B], 

respectively). Assumptions are A) reproduction number (R0) = 1.5, constant infectivity profile;  

B) R0 = 1.5, peaked infectivity profile; C) R0 = 2.5, constant infectivity profile; D) R0 = 2.5, peaked 

infectivity profile; E) R0 = 3.5, constant infectivity profile; F) R0 = 3.5, peaked infectivity profile. The 

gray panes cover the periods when the epidemic grows from 20 to 1,000 infected people in Sydney; 

dotted, dashed, dash-dotted, and solid lines correspond to 99%, 90%, 80% and no travel restrictions, 

respectively. 



Page 15 of 21 
 

 

Figure 3. Distributions, based on 10,000 simulations, of the time delay, T20, given reproduction 

number (R0) = 1.5 and the peaked infectivity function, with 99% travel restrictions imposed in scenario 

1 (A) and (B) and scenario 2 (C) and (D). Scenario 1 simulates an epidemic beginning in Sydney and 

spreading to Melbourne. In scenario 2, the epidemic begins in Darwin and spreads to Sydney. In (A) 

and (C), the restrictions are imposed after 2 weeks; in (B) and (D), they are imposed after 4 weeks. 



Page 16 of 21 
 

 

Figure 4. For an epidemic beginning in Darwin, the value of the median time delay, m20, in the 

presence of travel restrictions applied at a delay of 0–6 weeks (8 weeks in [A] and [B], respectively). 

Assumptions are (A) reproduction number (R0) = 1.5, constant infectivity profile; (B) R0 = 1.5, peaked 

infectivity profile; (C) R0 = 2.5, constant infectivity profile; (D) R0 = 2.5, peaked infectivity profile;  

(E) R0 = 3.5, constant infectivity profile; (F) R0 = 3.5, peaked infectivity profile. The gray panes cover 

the periods when the epidemic grows from 20 to 1,000 infected people in Darwin. Dotted, dashed, 

dash-dotted, and solid lines correspond to 99%, 90%, 80%, and no travel restrictions, respectively. 
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Appendix 

(A) Simulation Model 

The model equations for a single city are given by 
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where i(t) denotes the number of new infected persons on day t and is determined by the 

Poisson random variable X(t) with mean μ = S(t)p(t). Here, 
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is the probability on day t of a given susceptible person becoming infected. This equation 

corresponds to an illness with total infection period of D days and a varying degree of 

infectivity ρ(τ) over the course of each infection. Note that τ = 0, 1,…, D-1, and Σρ(τ) = 1. 

Multiple cities are accommodated by introducing a pair of labels to indicate a 

person’s city of origin and destination as well as a rate of travel Akl from city k to city l per 

day. The situations considered in this article involve only 2 cities, with just 2 rates of travel, 

A12 and A21. We set A12 ≡ A1 and A21 ≡ A2, for convenience. The epidemic equations for city 1 

become 
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Here, X1(t) is a Poisson random variable with mean μ1(t) = S1(t)[A1 p2(t) + (1 – A1)p1(t)], 

where p1(t) is given by 
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Note that the equations for city 2 and p2(t) can be obtained by replacing the label 1 

with 2 and vice versa in the previous 2 equations. 

The sensitivity of the results to the assumption that all infected persons travel can be 

tested by making an optimistic assumption that two thirds of infected persons are 

symptomatic and do not travel. This leads to an additional median delay of between 2 days 

(reproduction number R0 = 3.5, peaked infectivity) and 11 days (R0 = 1.5, flat infectivity) if 

applied to infections acquired while a person is at home or traveling. If, however, one 

assumes that persons infected while traveling would return home, then the delay is less 

significant, 1–4 days in scenario 1 and 0–1 days in scenario 2. 

(B) Simple Model in Continuous Time 

A simpler deterministic model for the infected persons is used to analyze differences 

in rates of travel on a single route. If we consider only the early stages of the epidemic, well 

before the peak, then the number of susceptible persons is approximately equal to the total 

population. The epidemic equations then reduce to the pair of coupled, linear ordinary 

differential equations that describe the change in the number of infected persons over time: 
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where β is the effective contact rate, 1/γ is the average duration of infection, η is the 

population of city 1 divided by the population in city 2, A1 and A2 are the travel rates from 

city 1 to city 2 and vice versa, and φ+ and φ− are population modifiers due to travel, with 

definitions 
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Symbolically, the solution to these equations can be written as 
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When susceptible persons are prevented from traveling, this matrix simplifies to the form 
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while in the absence of travel by infected persons, it can be expressed as 
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Although the equations for the time to spread can be written in analytic form, a numerical 

solution is required, and hence the MATLAB (The MathWorks, Natick, MA, USA) function 

fsolve is used to compute the solutions graphed in the Appendix Figure panel A. 

(C) Dependence on Origin of Travelers and City Size 

The dependence on these factors can be studied more generally in terms of differences 

in population size and travel rates by using the above deterministic version of the stochastic 

model used in simulations. In this context, T20, the time between the days on which the 

number of infected persons first reached 20 in city 1 and first reached 20 in city 2, is no 

longer random. In Figure panel A, the effect on T20 of varying the city 1/city 2 population 

ratio (η) is graphed (assumptions are that the city 1/city2 travel rates are equal, with R0 = 1.5, 

a 6-day infection period, and the epidemic beginning in city 1). The solid curves show that 

the delay in epidemic spread increases noticeably as the size of city 1 increases in comparison 

to city 2. Figure panel B explores the effect of differences in the ratio of city 1/city 2 travel 

rates for 3 different city population ratios (η = 1, 1/10, and 10) and shows that this factor can 

also strongly influence T20. 

A better understanding of the effect of city size ratio on T20 is obtained by “switching 

off” the travel of infected persons or, alternatively, susceptible persons in the model. 

Switching off travel by susceptible persons implies that disease can only spread through the 

movement of infected persons from city 1 to city 2. Since the ratio, η, does not alter the 

average number of infections per infectious person (R0), it should not influence the delay in 

intercity spread if susceptible persons do not travel. The dashed line in Figure panel A 

confirms this prediction. If, however, only susceptible persons can initiate journeys, then the 

disease can only move from city 1 to city 2 through susceptible persons from city 2 acquiring 

the infection in city 1 before returning to city 2. The ratio of city sizes ought to be important 

in this instance because the risk of acquiring infection from a single infected person is 

inversely proportional to the size of the population. This effect is apparent from the dotted 

line in Figure panel A, with T20 increasing linearly with log(η) for all but very small values of 

the variable. 
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(D) Analytic Approximations 

The effect of travel restrictions can be approximated in terms of the initial growth 

rate, r, of the epidemic as Tp = 0.99 = log(100)/r, for 99% restrictions and similarly for other 

levels of travel restriction. The time taken to reach 20 cases can be used to estimate r, and in 

fact, we can re-express Tp by using this time: Tp = 0.99 = T20*log(100)/log(20). In practice, 

estimates based on T20 can be somewhat inaccurate for low values of R0 (Figure panel D). 

The probability of an outbreak spreading from city 1 to city 2, as described by the 

simulation model above, can be approximated by using extinction probabilities for branching 

processes (1). If, over the course of an outbreak, an attack rate, AR, occurs in the source 

region, then with N visitors in town A per day and N citizens of town A visiting the source 

region, the probability of an outbreak occurring is 

),)1(2exp(1 0RARqNpA −−−≈   (10) 

where q is the extinction probability for a Poisson branching process with mean R0. As is 

seen in Figure panel C, where AR ≈ (1–q), this approximates the simulation model very well. 

Reference 

1. Grimmett GR, Stirzaker DR. Probability and random processes, 3rd ed. Oxford (UK): Oxford 

University Press; 2001. 
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Appendix Figure. A) T20 (the time between the days on which the number of infected persons first 

reached 20 in city 1 and first reached 20 in city 2) (now deterministic) for reproduction number  

R0 = 1.5 and 6-day duration of infection, when the city size ratio, η = N1/N2, is varied. The epidemic is 

assumed to begin with 1 infectious person in city 1. Travel rates are equal (A1 = A2) with A1 = 1/1,000; 

solid, dotted, and dashed lines correspond to persons being free to travel, independent of disease 

state, only susceptible and removed persons traveling, and only infected persons traveling, 

respectively. B) Persons are free to travel regardless of disease state, with A1 = 1/1,000, but the 

reverse travel rate is varied. Solid, dotted, and dashed curves correspond to η = 1, 10, and 1/10, 

respectively. C) Probability of the outbreak spreading to city 2 as travel volume increases, with 

markers indicating results from simulations and curves from the analytic approximation. D) the 

analytic formula for effect of travel restrictions is compared with simulations of scenario 1 (an outbreak 

beginning in Sydney and spreading to Melbourne) by using the flat infectivity function. Horizontal axes 

are on a log-scale, and the legend in panel C also refers to panel D. 

 


